LIST OF PAPERS PUBLISHED IN THE INTERNATIONAL JOURNALS
1. K. K. Dewangan, RohitKumar Verma; Fixedpoint theorems for modified F-contractionmappings, Int. J. Math.Arch. 12(5)(2021), 17-22, e-ISSN: 2229-5046, www.inma.info
2. R.K. Verma, H.K.Pathak; CommonFixed Pointtheorems in Complex Valued Metric Space and Application, ThaiJournal ofMathematics Volume 17(2019) Number 1: 75–88, http://thaijmath.in.cmu.ac.th e-ISSN:1686-0209
3. Rohit Kumar Verma, Fixedpoint theorems using(CLCS) property in complex valued $b$-metric spaces, Facta.UniversitatisSer. (Math & Computer)32(3)(2017), pp.269-292,e-ISSN:0352-9665 http://casopisi.junis.ni.ac.rs/index.php/FUMathInf/article/view/945doi:10.22190/FUMI1703269V
4. R. K. Verma, common fixed points incomplex-valued b-metricspaces satisfying a set of rational inequalities, Int.Jour. Math.Arch. 7(10)(2016), 2016, 143-150 e-ISSN2229–5046 http://www.ijma.info/index.php/ijma/article/view/4484
5. R.K. Verma, H.K.Pathak; CommonFixed PointTheorems Using Property (E.A) in Complex-Valued Metric Spaces, ThaiJournalof Mathematics, 11(2)(2013),347-355, http://thaijmath.in.cmu.ac.th e-ISSN: 1686-0209
6. R.K. Verma, H.K. Pathak, Solutionof nonlinear integralequations via fixed point of generalized contractivecondition, Mat.Vesnik 64(3)(2012),223–231, https://www.emis.de/journals/MV/123/mv12305.pdf
7. R.K. Verma, H.K.Pathak, Common fixed point theorems foroccasionally converse commutingmappings in symmetric spaces, KathmanduUniv. J. Sci., Eng. And Tech. 7(1)(2011), https://www.nepjol.info/index.php/KUSET
8. H.K.Pathak, Rodríguez-López,Rosana, R. K. Verma, A common fixed point theorem ofintegral type using implicitrelation, Nonlinear Funct. Anal. Appl. 15(2010),no. 1, 1–12,
9. H.K. Pathak, R. K., Verma, Commonfixed point theorems forweakly compatible mappings on Menger space andapplication, Int. J.Math. Anal.(Ruse) 3(2009), no. 21-24,1199–1206, http://www.m-hikari.com/ijma/ ISSN: 1312-8876 (print),ISSN:1314-7579(online), doi:10.12988/ijma
10. H. K. Pathak, R. K., Verma, Anintegral type implicitrelation for converse commuting mappings, Int. J.Math. Anal. (Ruse) 3(2009),no.21-24, 1191– 1198 http://www.m-hikari.com/ijma/ ISSN:1312-8876 (print),ISSN:1314-7579 (online), doi:10.12988/ijma
11. H. K. Pathak, R. K.Verma, Integral type contractivecondition for converse commuting mappings,Int. J. Math. Anal.(Ruse) 3(2009), no. 21-24, 1183– 1190 http://www.m-hikari.com/ijma/ ISSN:1312-8876 (print),ISSN:1314-7579 (online), doi:10.12988/ijma
12. H. K. Pathak, R. K. Verma, B.Fisher, Fixed point andcoincidence point theorems on Banach spaces overtopological semi-fields andtheir applications, Thai J. Math. 7(2009),no. 1,115–127, http://thaijmath.in.cmu.ac.th
13. H. K. Pathak, R. K. Verma,Coincidence and common fixed pointsin symmetric spaces under implicit relationand application. Int. Math.Forum3(2008), no. 29-32, 1489–1499,54H25 (47H10) MR2447641, http://www.m-hikari.com/imf-password2008/29-32-2008/vermaIMF29-32-2008.pdf
14. H. K. Pathak, R. K. Verma, weaklycompatible mappings andAltman type contraction, Filomat 2:1(2008), 33–46 http://www.doiserbia.nb.rs/Article.aspx?ID=0354-51800801031P#.YMBJGfkzY2w
15. H.K. Pathak, R.Rodriguez-Lopez,R.K. Verma, A common fixedpoint theorem using implicit relationand property(EA) in metric space, Filomat 21(2)(2007),211-234, http://www.doiserbia.nb.rs/Article.aspx?ID=0354-51800702211P#.YHV9RugzY2w
16. H. K. Pathak, R. K., Verma,S.M. Kang, M.S. Khan,Fixed points for weak compatible type and parametricallyφ(ε,δ;a)-contractionmappings, Int. J. Pure Appl. Math. 26(2006),no.2,247–263, https://ijpam.eu/ISSN-1311-8080, e-ISSN-1314-3395.
17. Rohit kumar. Verma, Rakesh Tiwariand Pratik Singh Thakur,Algebra of $alpha$- fuzzy subgroup and Lagrange'sTheorem, Int. Jour. CreativeRes. Thoughts, vol.-10, Issue-3, March-2022,b8-b12 ISSN 2320-2882 www.ijcrt.org
18. Rohit kumar. Verma, Rakesh Tiwariand Pratik Singh Thakur,Analysis of Time complexity of K-means and FuzzyC-means clusteringAlgorithum,Pramp Computationsalmathematics,Topic-3,Feb.2023, End.-I (2023) publication, Kolhapur (M.S.)ISBN:-978-81-956739-8-8.