

M.A./M.Sc. 3rd Semester Examination, Dec.-Jan., 2021-22

MATHEMATICS

Paper - I

Integration Theory and Functional Analysis

Time : Three How	urs] [<i>Max</i>	imum	Marks	:	80
	[Minimum	Pass	Marks	:	16

Note : Answer any **two** parts from each question. All questions carry equal marks.

Unit-I

- 1. (a) If E is a measurable set of finite positive measure, i. e., $0 < v(E) < \infty$, then prove that E contains a positive set A with v(A) > 0.
 - (b) State and prove Lebesgue Decomposition theorem.
 - (c) State and prove Caratheodory Extension theorem.

DRG_44_(3)

(2)

Unit-II

- 2. (a) If A is a μ -measurable subset of X and B is a v-measurable subset of Y, then prove that $A \times B$ is a $\mu \times v$ -measurable subset of $X \times Y$.
 - (b) Let *E* be a set in $R_{\sigma\delta}$ with $(\mu \times \nu) (E) < \infty$. Then show that the function *g* defined by

$$g(x) = v(E_x)$$

is a measurable function of x and $\int dx \, dx \, (x,y,y)(E)$

$$g d\mu = (\mu \times \nu)(E)$$

(c) Prove that every finite signed Borel measure μ on R^k that is absolutely continuous with respect to the Lebesgue measure λ , is differentiable almost everywhere.

Unit-III

- 3. (a) Prove that every compact Baire set is a G_{δ} .
 - (b) Let μ be a measure defined on a σ -algebra }} containing the Baire sets. If μ is quasi regular, then prove that for each $E \in$ }} with $\mu(E) < \infty$ there is a Baire set B with

$\mu (E \Delta B) = 0$

(c) State and prove Riesz-Markoff theorem.

DRG_44(3)

Unit-IV

- 4. (a) Let X be a non-zero finite-dimensional linear space of dimension n. If X is complete, then show that it is isomorphic to C^n .
 - (b) Show that on a finite dimensional linear space all norms are equivalent.
 - (c) Show that a normed linear space X is complete if and only if every absolutely convergent series in X is convergent.

Unit-V

5. (a) Prove that in a normed linear space X,

 $x_n \xrightarrow{W} x$ if and only if:

- (i) The sequence $\{||x_n||\}$ is bounded.
- (*ii*) For every element f of a total subset $M \subset X^*$, $f(x_n) \to f(x)$.
- (b) Let X and Y be normed linear spaces and T a linear transformation on X into Y. Then T is continuous either at every point of X or at no point of X. It is continuous on X if and only if there is a constant M such that $||Tx|| \le M \cdot ||x||$ for every x in X.
- (c) Show that the dual space of c_0 is l_1 .

DRG_44_(3)

M.A/M.Sc. 3rd Semester Examination, Dec.-Jan., 2021-22

MATHEMATICS

Paper - II

Partial Differential Equations and Mechanics - I

Time : Three Hours] [Maximum Marks : 80

Note : Answer any **two** parts from each question. All questions carry equal marks.

Unit-I

- (a) Solve the partial differential equation p+r+s=1
 (b) If \$\overline\$ is harmonic function in \$R_1\$ and
 - $\frac{\partial \phi}{\partial n} = 0$ on R_2 , then ϕ is a constant in \overline{R} .

DRG_92_(4)

- (2)
- (c) Find the Green's function for the Dirichlet problem on the rectangle $R_1: 0 \le x \le a, \ 0 \le y \le b$, described by the PDE.

$$(\Delta^2 + \lambda)u = 0$$
 in R_1

and the *BC*, u = 0 on R_2

Unit-II

- **2.** (*a*) State and prove Mean value theorem for Harmonic function.
 - (b) Derive the one dimensional wave equation.
 - (c) Obtain the solution of the heat flow

equation
$$\frac{\partial u}{\partial t} = c^2 \frac{\partial^2 u}{\partial x^2}$$
 by the method of

separation of variables.

Unit-III

- **3.** (*a*) State and prove Lagrange's equation of first kind.
 - (b) Derive the Hamilton canonical equations.
 - (c) Derive Ruth's equation.

DRG_92_(4)

Unit-IV

(*a*) Define Poisson bracket. If [φ, ψ] be the Poisson bracket of φ and ψ, then prove that :

(*i*)
$$\frac{\partial}{\partial t} [\phi, \psi] = \left[\frac{\partial \phi}{\partial t}, \psi \right] + \left[\phi, \frac{\partial \psi}{\partial t} \right]$$

(*ii*) $\frac{d}{dt} [\phi, \psi] = \left[\frac{d\phi}{dt}, \psi \right] + \left[\phi, \frac{d\psi}{dt} \right]$

(b) Find a curve joining two points along with a particle falling from rest under the influence of gravity travels from higher to the lower point in the minimum time.

(c) Show that the transformation :

$$P = \frac{1}{2}(p^2 + q^2), \quad Q = \tan^{-1}\left(\frac{q}{p}\right)$$

is canonical.

Unit-V

5. (a) Find the attraction of thin spherical shell of mean M and radius a.

DRG_92_(4)

(4)

(b) Show that the potential of a uniform spherical shell, of small thickness k, density ρ and radius a at an external point-distant c from the centre is

$$\frac{2\pi\gamma k\rho a}{(n+1)(n+3)c} \Big[(c+a)^{n+2} - (c-a)^{n+3} \Big]$$

(c) State and prove Gauss' theorem.

 $DRG_92_(4)$

M.A./M.Sc. 3rd Semester Examination, Dec.-Jan., 2021-22

MATHEMATICS

Optional (C)

Paper - III

Fuzzy Sets and its Applications - I

Time	:	Three	Hours]	[Max	imum	Marks	:	80
				[Minimum	Pass	Marks	:	16

Note : Answer any **two** parts from each question. All questions carry equal marks.

- 1. (a) Define law of excluded middle and law of contradiction and discuss the distributive property of (i, u, c) which satisfies these two laws.
 - (b) State characterization theorem of *t*-conorms and find *t*-conorm for $g(a) = 1 - (1 - a)^p$.

DRG_139_(4)

(c) Define convexity for a set graphically and show that a Fuzzy set A on R is convex iff

 $A (\lambda x_1 + (1 - \lambda)x_2) \ge \min [A(x_1), A(x_2)].$

- 2. (a) Explain extension principle, how it differs from crisp function. Show that $\alpha [f(A)] \ge f(\alpha_A)$. Give a supportive example.
 - (b) Solve Fuzzy equation A + X = B where

$$A = \frac{\cdot 3}{[0,1)} + \frac{\cdot 5}{[1,2)} + \frac{\cdot 8}{[2,3)} + \frac{\cdot 9}{[3,4)} + \frac{1}{4} + \frac{\cdot 6}{(4,5]} + \frac{\cdot 2}{(5,6]}$$

$$B = \frac{\cdot 2}{[0,1)} + \frac{\cdot 3}{[1,2)} + \frac{\cdot 6}{[2,3)} + \frac{\cdot 5}{[3,4)} + \frac{\cdot 8}{[4,5)} + \frac{1}{6} + \frac{\cdot 5}{(6,7]} + \frac{\cdot 4}{(7,8]} + \frac{\cdot 2}{(8,9]} + \frac{\cdot 1}{(9,10]}$$

(c)
$$A(x) = \begin{cases} 0 & \text{for } x < -2 \text{ and } x > 4 \\ \frac{x+2}{3} & \text{for } -2 \le x \le 1 \\ \frac{4-x}{3} & \text{for } 1 \le x \le 4 \end{cases}$$

DRG_139_(4)

(Continued)

(2)

$$B(x) = \begin{cases} 0 & \text{for } x < 1 \text{ and } x > 3\\ x - 1 & \text{for } 1 \le x \le 2\\ 3 - x & \text{for } 2 \le x \le 3 \end{cases}$$

Find
MIN $(A, B)(x)$ and MAX $(A, B)(x)$.

- 3. (a) Define crisp and fuzzy relations. Let $X = \{1, 2,, 10\}$. The cartesian product $(x \times y)$ contains 100 members. Let $R(X, X) = \{(x, y) \mid x \text{ and } y \text{ have the same remainder when divided by 3}.$ Is R an equivalance relation on X? Find equivalance classes.
 - (b) Write a short note on Fuzzy morphisms.
 - (c) Prove that
 - (i) $w_i(a, d) \ge b$ iff $i(a, b) \le d$
 - (*ii*) $w_i (\inf a_j, b) \ge \sup w_i (a_j, b)$
- 4. (a) Let $X = \{1, 2, ..., 100\}, Y = \{50, 51, ..., 100\}$

$$R(X,Y) = \begin{cases} 1 - \frac{x}{y} & x \le y \\ 0 & \text{otherwise} \end{cases}$$

- (*i*) What is the domain of R?
- (*ii*) What is the range of R?
- (*iii*) Calculate R^{-1}

DRG_139_(4)

(4)

- (b) Prove that min join are associative operations on binary fuzzy relations.
- (c) Write a short note on fuzzy compatibility relations.
- 5. (a) Define the following :
 - (i) Total ignorance
 - (ii) Fuzzy measure
 - (iii) Degree of belief
 - (iv) Necessity measure
 - (b) If $X = \{a, b, c, d\}$, $m_1(a, b) = \cdot 2$, $m_1(a, c) = \cdot 3$, $m_1(b, d) = \cdot 5$, $m_2(a, d) = \cdot 2$, $m_2(b, c) = \cdot 5$, $m_2(a, b, c) = \cdot 3$. Calculate the basic probability assignment.
 - (c) $F = \frac{\cdot 4}{1} + \frac{\cdot 7}{2} + \frac{1}{3} + \frac{\cdot 8}{4} + \frac{\cdot 5}{5}$ and A(x) = 0 for all $x \notin \{1, 2, 3, 4, 5\}$. Determine Nec (A) and Pos (A).

DRG_139_(4)

M.A./M.Sc. 3rd Semester Examination, Dec.-Jan., 2021-22

MATHEMATICS

Optional - A

Paper - IV

Operations Research - I

Time :	Three	Hours]	[Max	imum	Marks	:	80
			[Minimum	Pass	Marks	:	16

Note : Answer any **two** parts from each question. All questions carry equal marks.

Unit-I

1. (*a*) Solve the following linear programming problem by simplex method :

Maximize $Z_1 = 3x_1 + 2x_2 + 5x_3$ Subject to $x_1 + 2x_2 + x_3 \le 430$ $3x_1 + 2x_3 \le 460$ $x_1 + 4x_2 \le 420$ $x_1, x_2, x_3 \ge 0$

DRG_199_(7)

(2)

- (b) Apply the principle of duality to solve the linear programming problem :
 - Maximize $Z_1 = 3x_1 2x_2$ Subject to $x_1 + x_2 \le 5$ $x_1 \le 4$ $1 \le x_2 \le 6$ and $x_1, x_2 \ge 0$
- (c) A Steel company manufactures three products P_1 , P_2 , P_3 . Each product has to pass through two machines M_1 and M_2 . Each unit of P_1 requires 3 hours of M_1 and 2 hours of M_2 , each unit of P_2 requires 2 hours of M_1 and 5 hours of M_2 ; and each unit of P_3 requires 2 hours of M_1 and 3 hours of M_2 . The machines M_1 and M_2 are available for 30 hours and 40 hours respectively. The profit on each unit of products P_1 , P_2 and P_3 is $\neq 4$, $\neq 2$ and $\neq 3$ respectively. If all the manufactured products are sold, formulate the problem as an LPP to maximize the profit.

Unit-II

2. (*a*) Use Dual Simplex method to solve the following :

Maximize $Z = -2x_1 - x_3$ Subject to $x_1 + x_2 - x_3 \ge 5$ $x_1 - 2x_2 + 4x_3 \ge 8$ and $x_1, x_2, x_3 \ge 0$

DRG_199_(7)

- (b) Use Big-M method to solve the following: Maximize $Z = 3x_1 - x_2$ Subject to $2x_1 + x_2 \ge 2$ $x_1 + 3x_2 \le 3$ $x_2 \le 4$ and $x_1, x_2 \ge 0$
- (c) Write the dual of the following L.P. problem : Minimize $Z_1 = 3x_1 - 2x_2 + 4x_2$

Subject to
$$3x_1 + 5x_2 + 4x_3 \ge 7$$

 $6x_1 + x_2 + 3x_3 \ge 4$
 $7x_1 - 2x_2 - x_3 \le 10$
 $x_1 - 2x_2 + 5x_3 \ge 3$
 $4x_1 + 7x_2 - 2x_3 \ge 2$
and $x_1, x_2, x_3 \ge 0$

Unit-III

3. (a) For the following L.P.P Minimize $Z = \lambda x_1 - \lambda x_2 - x_3 + x_4$ Subject to $3x_1 - 3x_2 - x_3 + x_4 \ge 5$ $2x_1 - 2x_2 + x_3 - x_4 \le 3$ and $x_1, x_2, x_3, x_4 \ge 0$ find the range of λ over which the solution remain basic feasible and optimal.

DRG_199_(7)

- (4)
- (b) An office equipment manufacturer procues two kinds of products, chairs and lamps. Production of either a chair or a lamp requires 1 hour of production capacity in the plant. The plant has a maximum capacity of 10 hours per week. The gross margin from the sale of a chair is ₹ 80 and ₹ 40 for that of a lamp. Formulate the problem as a goal programming problem if the goal of the firm is to earn a profit of ₹ 800 per week.
- (c) Explain the graphical solution to a general programming problem.

Unit-IV

4. (*a*) Solve the following transportation problem in which cell entries represent unit costs :

		То		Available
	2	7	4	5
	3	3	1	8
From	5	4	7	7
	1	6	2	14
Required	7	9	18	34

DRG_199_(7)

(5)

(b) Solve the minimal assignment problem whose effectiveness matrix is given by:

	1	2	3	4
Ι	2	3	4	5
Π	4	5	6	7
III	7	8	9	8
IV	3	5	8	4

(c) Prove that a necessary and sufficient condition for the existence of feasible solution of a transportation problem is

$$\sum a_i = \sum b_j (i = 1, 2..., m, j = 1..., n)$$

Unit-V

- 5. (a) Define the following :
 - (i) Merge event
 - (ii) Burst event
 - (iii) Total float
 - (iv) Free float

DRG_199_(7)

- (6)
- (b) Find the critical path and calculate the slack time for each event for the following PERT diagram :

(c) A project has the following time schedule :

Activity	Time in weeks
(1-2)	4
(1-3)	1
(2-4)	1
(3-4)	1
(3-5)	6
(4-9)	5
(5-6)	4
(5-7)	8
(6-8)	1
(7-8)	2
(8-9)	1
(8-10)	8
(9-10)	7

DRG_199_(7)

(Continued)

(7)

Construct PERT network and compute :

- (i) T_E and T_L for each event
- (ii) Float for each activity
- (iii) Critical path and its duration

DRG_199_(7)

M.A/M.Sc. 3rd Semester Examination, Dec.-Jan., 2021-22

MATHEMATICS

Optional (B)

Paper - V

Graph Theory-I

Time : Three Hours]

[Maximum Marks : 80

Note : Answer any **two** parts from each question. All questions carry equal marks.

- 1. (a) Prove that if a graph H is homeomorphic from a graph G, then G is a contraction of H.
 - (b) Prove that any homomorphism is the product of a connected and a discrete homomorphism.
 - (c) Prove that a graph G is contractible to a graph H and $\Delta(H) \leq 3$. Then G has a subgraph homeomorphism from H.

DRG_252_(3)

(2)

- 2. (a) Prove that if G is connected and has diameter d then the adjacency algebra has dimension at least d + 1.
 - (b) Prove that any square submatrix of the adjacency matrix F of a graph G has determinant +1, -1 or zero.
 - (c) Prove the sum of any two cuts of a graph G is also a cut of G.
- 3. (a) Prove that if a connected k-chromatic graph has exactly one vertex of degree exceeding k-1 then it is minimal.
 - (b) Prove that any uniquely k-colorable graph is (k-1) connected.
 - (c) Prove that every planar graph is 5-vertex colorable.
- 4. (a) Prove that for any graph G, $\alpha_0 + \beta_0 = n$.
 - (b) Prove that for any graph G of order $n \ge 2$

without isolated vertices $\pi_1 \leq \left\lceil \frac{n^2}{4} \right\rceil$ and

the partition need use only edges and triangles.

(c) Prove that for any connected graph G, $n \ge 2\beta_0 - 1$.

DRG_252_(3)

- 5. (a) Prove that a graph is triangulated iff every minimal vertex-separator induces a complete subgraph.
 - (b) Prove that every strongly perfect graph is perfect.
 - (c) Prove that a graph G is a permutation graph iff G and \overline{G} are comparability graphs.

DRG_252_(3)

460

(3)