
Unit-I

1. (a) If E is a measurable set of finite positive
measure, i. e., 0 <  (E) < , then prove
that E contains a positive set A with
 (A) > 0.

(b) State and prove Lebesgue Decomposition
theorem.

(c) State and prove Caratheodory Extension
theorem.
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Unit-II

2. (a) If A is a -measurable subset of X and B
is a -measurable subset of Y, then prove
that A × B is a  × -measurable subset
of X × Y.

(b) Let E be a set in R with
( × ) (E) < . Then show that the
function g defined by

g (x) =  (Ex)
is a measurable function of x and

  g d E    .

(c) Prove that every finite signed Borel
measure  on Rk that is absolutely
continuous with respect to the Lebesgue
measure , is differentiable almost
everywhere.

Unit-III

3. (a) Prove that every compact Baire set is a
G.

(b) Let  be a measure defined on a
-algebra }}} containing the Baire sets.
If  is quasi regular, then prove that for
each E  }}} with  (E) <  there is a
Baire set B with

 (E  B) = 0
(c) State and prove Riesz-Markoff theorem.

( 2 )
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Unit-IV

4. (a) Let X be a non-zero finite-dimensional
linear space of dimension n. If X is
complete, then show that it is isomorphic
to Cn.

(b) Show that on a finite dimensional linear
space all norms are equivalent.

(c) Show that a normed linear space X is
complete if and only if every absolutely
convergent series in X is convergent.

Unit-V

5. (a) Prove that in a normed linear space X,

n
wx x  if and only if :

(i) The sequence {|| xn ||} is bounded.
(ii) For every element f of a total subset

M  X *, f (xn)  f (x).
(b) Let X and Y be normed linear spaces and

T a linear transformation on X into Y.
Then T is continuous either at every point
of X or at no point of X. It is continuous
on X if and only if there is a constant
M such that || Tx ||  M  || x || for every x
in X.

(c) Show that the dual space of c0 is l1.
———



Unit-I

1. (a) Solve the partial differential equation
p + r + s = 1

(b) If  is harmonic function in R1 and

0
n
 


 on R2, then  is a constant in

R .
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(c) Find the Green’s function for the
Dirichlet problem on the rectangle
R1 : 0  x  a, 0  y  b, described by the
PDE.

(2+)u = 0 in R1

and the BC, u = 0 on R2

Unit-II

2. (a) State and prove Mean value theorem for
Harmonic function.

(b) Derive the one dimensional wave
equation.

(c) Obtain the solution of the heat flow

equation 
2

2
2

u uc
t x

 
 

 by the method of

separation of variables.

Unit-III

3. (a) State and prove Lagrange’s equation of
first kind.

(b) Derive the Hamilton canonical equations.

(c) Derive Ruth’s equation.

( 2 )
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Unit-IV

4. (a) Define Poisson bracket. If [, ] be the
Poisson bracket of   and , then prove
that :

(i)  , , ,
t t t
                  

(ii)  , , ,d d d
dt dt dt

               

(b) Find a curve joining two points along
with a particle falling from rest under the
influence of gravity travels from higher
to the lower point in the minimum time.

(c) Show that the transformation :

 2 21
2

P p q  , 
1tan qQ

p
  

   

is canonical.

Unit-V

5. (a) Find the attraction of thin spherical shell
of mean M and radius a.
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(b) Show that the potential of a uniform
spherical shell, of small thickness k,
density  and radius a at an external
point-distant c from the centre is

      2 32
1 3

n nk a c a c a
n n c

         

(c) State and prove Gauss’ theorem.
———

( 4 )
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1. (a) Define law of excluded middle and law
of contradiction and discuss the
distributive property of (i, u, c) which
satisfies these two laws.

(b) State characterization theorem of
t-conorms and find t-conorm for
g (a) = 1 – (1 – a)p.
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(c) Define convexity for a set graphically
and show that a Fuzzy set A on R is
convex iff
A (x1 + (1 – )x2)  min [A(x1) , A(x2)].

2. (a) Explain extension principle, how it differs
from crisp function. Show that
 [ f (A)]  f (A). Give a supportive
example.

(b) Solve Fuzzy equation A + X = B where

3 5 8 9 1 6
[0,1) [1, 2) [2,3) [3, 4) 4 (4,5]

A          

2
(5,6]


2 3 6 5 8 1
[0,1) [1, 2) [2,3) [3, 4) [4,5) 6

B          

5 4 2 1
(6,7] (7,8] (8,9] (9,10]
      

(c)

0 for 2and 4
2( ) for 2 1

3
4 for 1 4

3

x x
xA x x

x x


   
    


  

( 2 )
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0 for 1and 3
( ) 1 for 1 2

3 for 2 3

x x
B x x x

x x

 
   
   

Find
MIN (A, B) ( x ) and MAX (A, B) ( x ).

3. (a) Define crisp and fuzzy relations. Let
X = {1, 2, ....., 10}. The cartesian product
(x × y) contains 100 members. Let
R(X, X) = {(x, y) | x and y have the same
remainder when divided by 3}. Is R an
equivalance relation on X ? Find
equivalance classes.

(b) Write a short note on Fuzzy morphisms.

(c) Prove that

(i) wi (a, d)  b iff i (a, b)  d

(ii) wi (inf aj, b)  sup wi (aj, b)

4. (a) Let X = {1, 2, ...., 100}, Y = {50, 51, ....,100}

1
( , )

0 otherwise

x x y
yR X Y

   


(i) What is the domain of R ?

(ii) What is the range of R ?

(iii) Calculate R–1



(b) Prove that min join are associative
operations on binary fuzzy relations.

(c) Write a short note on fuzzy compatibility
relations.

5. (a) Define the following :

(i) Total ignorance

(ii) Fuzzy measure

(iii) Degree of belief

(iv) Necessity measure

(b) If X = {a, b, c, d}, m1 (a, b) = .2,
m1 (a, c) = .3, m1 (b, d) = .5, m2 (a, d) = .2,
m2 (b, c) = .5, m2 (a, b, c) = .3. Calculate
the basic probability assignment.

(c)
4 7 1 8 5
1 2 3 4 5

F          and A (x) = 0 for

all x {1, 2, 3, 4, 5}. Determine
Nec (A) and Pos (A).

———

( 4 )
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Unit-I

1. (a) Solve the following linear programming
problem by simplex method :

Maximize Z1 = 3x1 + 2x2 + 5x3

Subject to x1 + 2x2 + x3  430

3x1 + 2x3  460

x1 + 4x2  420

x1, x2, x3  0
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(b) Apply the principle of duality to solve
the linear programming problem :
Maximize Z1 = 3x1 – 2x2
Subject to x1 + x2  5

x1  4
1  x2  6 and x1, x2  0

(c) A Steel company manufactures three
products P1, P2, P3. Each product has to
pass through two machines M1 and M2.
Each unit of P1 requires 3 hours of M1 and
2 hours of M2, each unit of P2 requires
2 hours of M1 and 5 hours of M2; and each
unit of P3 requires 2 hours of M1 and
3 hours of M2. The machines M1 and M2
are available for 30 hours and 40 hours
respectively. The profit on each unit of
products P1, P2 and P3 is G 4, G 2 and G 3
respectively. If all the manufactured
products are sold, formulate the problem
as an LPP to maximize the profit.

Unit-II

2. (a) Use Dual Simplex method to solve the
following :
Maximize Z = –2x1 – x3
Subject to x1 + x2 – x3  5

x1 – 2x2 + 4x3  8
and x1, x2, x3  0

( 2 )
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(b) Use Big-M method to solve the
following :
Maximize Z = 3x1 – x2
Subject to 2x1 + x2  2

x1 + 3x2  3
x2  4 and x1, x2  0

(c) Write the dual of the following L.P.
problem :
Minimize Z1 = 3x1 – 2x2 + 4x3
Subject to 3x1 + 5x2 + 4x3  7

6x1 + x2 + 3x3  4
7x1 – 2x2 – x3  10
x1 – 2x2 + 5x3  3
4x1 + 7x2 – 2x3  2

and x1, x2, x3  0

Unit-III

3. (a) For the following L.P.P
Minimize Z = x1 – x2 – x3 + x4
Subject to 3x1 – 3x2 – x3 + x4  5

2x1 – 2x2 + x3 – x4  3
and x1, x2, x3, x4  0

find the range of  over which the
solution remain basic feasible and
optimal.
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(b) An office equipment manufacturer
procues two kinds of products, chairs
and lamps. Production of either a chair
or a lamp requires 1 hour of production
capacity in the plant. The plant has a
maximum capacity of 10 hours per
week. The gross margin from the sale
of a chair is G 80 and G 40 for that of
a lamp. Formulate the problem as a
goal programming problem if the goal
of the firm is to earn a profit of G 800
per week.

(c) Explain the graphical solution to a
general programming problem.

Unit-IV

4. (a) Solve the following transportation
problem in which cell entries represent
unit costs :

To Available
2 7 4 5
3 3 1 8

From 5 4 7 7
1 6 2 14

Required 7 9 18 34
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(b) Solve the minimal assignment problem
whose effectivenses matrix is given by :

1 2 3 4

I 2 3 4 5

II 4 5 6 7

III 7 8 9 8

IV 3 5 8 4

(c) Prove that a necessary and sufficient
condition for the existence of feasible
solution of a transportation problem is

 1,2.... , 1....i ja b i m j n   

Unit-V

5. (a) Define the following :

(i) Merge event

(ii) Burst event

(iii) Total float

(iv) Free float
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(b) Find the critical path and calculate the
slack time for each event for the
following PERT diagram :

1

62

83 7 9

4

4

4

1

12
2

3

3

5

8

5

5

(c) A project has the following time
schedule :

Activity Time in weeks

(1-2) 4
(1-3) 1
(2-4) 1
(3-4) 1
(3-5) 6
(4-9) 5
(5-6) 4
(5-7) 8
(6-8) 1
(7-8) 2
(8-9) 1

(8-10) 8
(9-10) 7
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( 7 )

Construct PERT network and compute :

(i) TE and TL for each event

(ii) Float for each activity

(iii) Critical path and its duration
———



1. (a) Prove that if a graph H is homeomorphic
from a graph G, then G is a contraction
of H.

(b) Prove that any homomorphism is the
product of a connected and a discrete
homomorphism.

(c) Prove that a graph G is contractible to a
graph H and (H)  3. Then G has a
subgraph homeomorphism from H.
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2. (a) Prove that if G is connected and has
diameter d then the adjacency algebra has
dimension atleast d + 1.

(b) Prove that any square submatrix of the
adjacency matrix F of a graph G has
determinant +1, –1 or zero.

(c) Prove the sum of any two cuts of a graph
G is also a cut of G.

3. (a) Prove that if a connected k-chromatic
graph has exactly one vertex of degree
exceeding k-1 then it is minimal.

(b) Prove that any uniquely k-colorable graph
is (k-1) connected.

(c) Prove that every planar graph is 5-vertex
colorable.

4. (a) Prove that for any graph G, 0 + 0 = n.

(b) Prove that for any graph G of order n  2

without isolated vertices 
2

1 4
n 

   
  

 and

the partition need use only edges and
triangles.

(c) Prove that for any connected graph G,
n  20–1.

( 2 )
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5. (a) Prove that a graph is triangulated iff
every minimal vertex-separator induces a
complete subgraph.

(b) Prove that every strongly perfect graph is
perfect.

(c) Prove that a graph G is a permutation
graph iff G and G  are comparability
graphs.

———


