

M.Sc. 3rd Semester Examination, Dec.-Jan., 2021-22

CHEMISTRY

Paper - I

Resonance Spectroscopy, Photochemistry and Organocatalysis

Time: Three Hours] [Maximum Marks: 80 [Minimum Pass Marks: 16]

Note: Answer all questions. The figures in the right-

hand margin indicate marks.

Unit-I

- 1. (a) Explain the principle of ESR spectroscopy. Describe spin polarization of atoms and metal ions.
 - (b) Discuss application of ESR spectroscopy to transition metal complexes. 8

OR

DRG_43_(3)

(Turn Over)

DRG_43_(3) (Continue		nued)	
		OR	
	(<i>d</i>)	Quantum yield	
	(c)	Photodegradation of polymer	
	(<i>b</i>)	Photo-Fries reaction of anilides	
	(a)	Stern-Volmer equation	
3.	Wri	te notes on the following:	5×4
		Unit-III	
	(b)	Discuss chemical and surface applications of photoacoustic spectroscopy.	10
	(a)	What is Auger Effect? Describe KLL Auger process and list out the applications of AES.	10
		OR	
	(b)	Discuss basic principle of photoacoustic spectroscopy.	10
2.	(a)	by photoelectron spectroscopy?	10
		Unit-II	
	(c)	Coupling constant	6
	(<i>b</i>)	S	7
	(a)	Quadrupole moment	7
	Wri	te notes on the following:	

(3)

	(a)	Discuss the effect of light intensity on rate of reaction.	6
	(b)	Write a note on photo-chemical formation of smog.	7
	(c)	Describe a method for determination of rate constant of a reaction.	7
		Unit-IV	
4.	(a)	Describe various types of organometallic reactions.	10
	(b)	Write brief notes on the following:(i) Alkene polymerization(ii) Oxidative elimination	5×2
		OR	
	(a)	Discuss Wacker oxidation of alkenes.	10
	(b)	Write notes on the following:(i) Asymmetric oxidation(ii) Nature of heterogenons catalysis	5×2

DRG_43_(3)

600

M.Sc. 3rd Semester Examination, Dec.-Jan., 2021-22

CHEMISTRY

Paper - II

Chemistry of Biomolecules

Time: Three Hours] [Maximum Marks: 80

[Minimum Pass Marks: 16

Note: Answer **all** questions. The figures in the right-hand margin indicate marks.

Unit-I

- (a) Discuss the role of ATP in biological system.
 - (b) Explain the statement that copper containing proteins are capable of catalyzing the disproportionation of superoxide ion.

OR

DRG_91_(3)

(Turn Over)

	(a)	Explain the standard free energy change
		in any one biochemical reaction. 8
	(<i>b</i>)	Write short notes on the following: 6×2
		(i) Relation between Heme protein and oxygen intake
		(ii) Synthetic model of cobalt complex
		Unit-II
2.	(a)	Write the structure and importance of cytochrome P450.
	(b)	What is the difference between chiral recognition and molecular recognition? Give suitable example.
	(c)	How the enzyme having Zn^{2+} lower the energy of transition state?
		OR
	Wri	te notes on any two of the following: 10×2
	(a)	Host-guest chemistry of enzyme
	(b)	Superoxide dismutase copper enzyme
	(c)	Biomimetic chemistry
		Unit-III
3.	(a)	Give the classification of enzyme in detail. 10
DR	G 91	(3) (Continued)

(b) Give mechanism of reaction catalyzed by

		NAD+ and pyridoxal phosphate.	10
		OR	
	Wri	te notes on any two of the following: 10	×2
	(a)	Structure and biological function of coenzyme A	
	(b)	Effect of immobilization of enzyme activity	
	(c)	Enzyme and recombinant DNA technology	
		Unit-IV	
4.	(a)	What is muscular contraction? Discuss its molecular mechanism, energy sources and molecular compound.	10
	(b)	Explain the structure and function of cell membrane.	10
		OR	
	Wri	te notes on any two of the following: 10	×2
	(a)	Hydrogen ion titration curve	
	(b)	Thermodynamics of membrane equilibrium	
	(c)	Ion transport through cell membrane	

DRG_91_(3) 600

M.Sc. 3rd Semester Examination, Dec.-Jan., 2021-22

CHEMISTRY

Paper - IV

Analytical Techniques and Data Analysis

Time: Three Hours] [Maximum Marks: 80 [Minimum Pass Marks: 16]

Note: Answer **all** questions. The figures in the right-hand margin indicate marks.

Unit-I

- **1.** (a) What is Sampling? Discuss in brief the methodology used for sampling of pond water.
 - (b) Explain the following:
 - (i) Types of errors
 - (ii) t-tests

OR

DRG_198_(3)

(Turn Over)

10

 5×2

	(a)	Explain principle, methodology and	
		applications of base digestion.	10
	(<i>b</i>)	Explain the following:	5×2
		(i) F-tests	
		(ii) Significant figures	
		Unit-II	
2.	(a)	What is Extraction? Discuss the methods of extraction.	10
	(<i>b</i>)	Discuss technique and applications of HPLC.	5
	(c)	Discuss the classification of chromatography.	5
		OR	
	(a)	Discuss technique and application of Thin-layer chromatography.	10
	(b)	Explain efficiency and selectivity of extraction.	5
	(c)	Define the term counter current extraction and retardation factor.	5
		Unit-III	
3.	(a)	Discuss the principle, instrumentation and application of DTA.	10
DR	.G_19	8 _(3) (Contin	nued)

	(<i>b</i>)	Explain Automated methods.	5
	(c)	Discuss the principle and instrumentation of FIA.	5
		OR	
	(a)	Discuss the principle, methodology and application of Flow Injection Analysis.	10
	(b)	Discuss the principle, instrumentation of DSC method.	5
	(c)	Discuss the factors affecting DTA.	5
		Unit-IV	
4.	(a)	Discuss the principle, instrumentation and application of conductometry.	10
	(<i>b</i>)	Explain the following:	5×2
		(i) Dropping mercury electrode	
		(ii) Polarized electrode	
		OR	
	(a)	Discuss the principle, instrumentation and application of pH potentiometry.	10
	(<i>b</i>)	Explain the following:	5×2
		(i) Cyclic voltammetry	
		(ii) Micro electrode	
			

M.Sc. 3rd Semester Examination, Dec.-Jan., 2021-22

CHEMISTRY

Paper - III

Catalysis, Solid State and Surface Chemistry

[Minimum Pass Marks: 16]
Note: Answer all questions. The figures in the right-

[Maximum Marks: 80

hand margin indicate marks. Log table or non-programmable calculator can be used.

Unit-I

- 1. (a) Explain nucleophilicity scales. 4
 - (b) Describe mechanism of Acid-Base dissociation. 8
 - (c) Describe electronic and structural effect on acidity and basicity. 8

OR

DRG_136_(3)

Time : Three Hours]

(Turn Over)

	(a)	What is acidity and basicity? Explain with examples.	4
	(b)	Explain ambivalent nucleophile with examples.	4
	(c)	Describe Bronsted acid and base catalysis.	12
		Unit-II	
2.	(a)	Describe the effect of electrolyte on critical micelle concentration (CMC).	6
	(b)	Explain the thermodynamics of micellization.	6
	(c)	Describe the Laplace's equation. How many solutions does Laplace equation have?	8
		OR	
	(a)	Describe Gibbs adsorption isotherm.	10
	(b)	Discuss the factors affecting the critical micelle concentration (CMC) value.	10
		Unit-III	
3.	(a)	Explain Non-stoichiometry imperfect and perfect crystals with example.	8
	(b)	Discuss thermodynamics of Schottky defect.	8
	(c)	Explain formantion of color centres.	4
		OR	
DR	G_13	6_(3) (Continu	ued)

	(a)	Explain Schottky and Frankel defects with example.	4
	(b)	Give the thermodynamics of Frenkel defect.	8
	(c)	Describe electronic properties and band theory of semiconductors.	8
		Unit-IV	
4.	(a)	Define polymers. Mention various types of polymers. Discuss the free radical mechanism of polymerization.	12
	(b)	Describe the viscometry method of determination of molecular mass.	8
		OR	
	(a)	Discuss the kinetics of polymerization.	4
	(b)	Give brief account of chain topology and crystal structure of polymers.	6
	(c)	Derive expression for calculation of average dimensions of various chain	
		structures.	10