

M.Sc. 1st Semester Examination, Dec.-Jan., 2021-22

CHEMISTRY

Paper - I

Group Theory and Chemistry of Metal Complexes

Time : Three Hours]	[Maximum	Marks	:	80
	[Minimum Pass	Marks	:	16

Note : Answer all questions. The figures in the righthand margin indicate marks.

Unit-I

DR	G_18	_(4) (7)	urn O	ver)
		OR		
	(c)	Define proper and improper axes symmetry with suitable example.	of	6
	(<i>b</i>)	Write down the multiplication table C_{2v} point group.	for	8
1.	(<i>a</i>)	Write the postulates of great orthogona theorem.	lity	6

	(<i>a</i>)	Explain reducible and irreducible representation.	6
	(<i>b</i>)	 Find out point group for the following compounds : (<i>i</i>) P-dichlorobenzene (<i>ii</i>) ClF₃ (<i>iii</i>) NH₃ 	8
	(c)	Write a note on conjugacy relation and classes.	6
		Unit-II	
2.	(<i>a</i>)	Explain the formation of σ bonds in any octahedral complex using MOT.	6
	(<i>b</i>)	Write chemical reactions of sodium nitropruside.	6
	(c)	Describe molecular configuration of CO molecule as suggested by Coulson.	8
		OR	
	(<i>a</i>)	Discuss the structure of mononuclear dioxygen complex.	6
	(<i>b</i>)	Fe (CO) ₅ is known while $[Fe (CO)_6]^{3+}$ is not known. Why?	6
	(c)	Write the effects of π bonding on the value of Δ_0 .	8

DRG_18_(4)

(Continued)

Unit-III

3.	(<i>a</i>)	How does chelation affects stability of complexes ?	6
	(<i>b</i>)	Describe the experimental determination of stability constant by spectrophotometric method.	8
	(<i>c</i>)	Explain the types of Isopolytungstate.	6
		OR	
	(<i>a</i>)	Write a note on properties and uses of aluminosilicates.	6
	(<i>b</i>)	Write a note on synthesis and properties of silicones fluids and silicones rubber.	8
	(c)	Give classification of heteropoly molybdate.	6
		Unit-IV	
4.	(<i>a</i>)	What are phosphazines? Discuss nature of bond in triphosphazines.	6
	(<i>b</i>)	What are carboranes? Write their preparation properties and structure.	8
	(<i>c</i>)	Write a note on Borazines.	6
		OR	
DR	G_18	B_(4) (Turn O	ver)

(4)

(<i>a</i>)	Write Wade's rule to explain the structure of closo, nido and arachno boranes.	6
(h)	Write a note on hotoresetenction	6
(D)	Write a note on heterocatenation.	0
(c)	What are metal carbonyl culster?	
	Describe with suitable examples.	8

DRG_18_(4)

M.Sc. 1st Semester Examination, Dec.-Jan., 2021-22

CHEMISTRY

Paper - II

Concepts in Organic Chemistry

<i>Time</i> : Three Hours] [Max	ximum Marks : 80
---------------------------------	------------------

Note : Answer all questions. The figures in the righthand margin indicate marks.

Unit-I

- 1. (a) Define crown ethers with suitable example. Explain the role of 18-crown-6 in conversion of 1, 3-dichloro propane to 1, 3-dinitrile propane (Glutaronitrile)
 10 Cl Cl 18-Crown-6 NC CN
 (b) Discuss bonding in Fullerenes.
 5
 - (c) Explain the criterion for Homoaromaticity in Tropylium cation $(C_8H_9)+$.

OR

DRG_66(4)

(Turn Over)

<i>(a)</i>	Explain	in d	etail	Aroma	ticity	and	
	Antiarom	aticity	on	the	basis	of	
	perturbati	ion mol	lecular	orbital	theory	-	12

- (b) Give brief account on the following : 4×2
 - (i) Cyclodextrins
 - (ii) Catenanes

Unit-II

2.	<i>(a)</i>	What	are	stereospecific	and	stereo	
				actions? Expla two examples			8

- (b) Discuss conformational analysis of 1,
 4-disubstituted cyclohexane. Comment on
 their stability on the basis their energy.
- (c) Explain with suitable example Threo and Erythro isomers.

OR

sa	whorse	and N	projectio ewmann 3-phenyl	formula	ae of	
(P	h — CH	-Cl-	СН — С	1 - COC	DH).	10
	xplain ample.	asymme	etric sy	nthesis	with	5
	scuss th d allene	1	l activity	of biphe	enyles	5

DRG_66(4)

(Continued)

Unit-III

(<i>a</i>)	Discuss the structure and generation of carbocation. Give the order of stability of the following carbocation Ethyl, Benzyl, Tert-butyl, Allyl.	10
(<i>b</i>)	Explain E2 elimination reaction with suitable example. Discuss effect of substrate and leaving group on E2 elimination.	6
(<i>c</i>)	Explain Hunsdiecker reaction.	4
	OR	
(<i>a</i>)	reactive intermediates? Discuss their	10
(<i>b</i>)		6
(<i>c</i>)	Explain E1cB reaction with mechanism.	4
	Unit-IV	
(<i>a</i>)	Explain thermal and photo induced [4+2] cyclo-addition reaction. State which is symmetry allowed and which is symmetry forbidden.	8
	 (b) (c) (a) (b) (c) 	 of the following carbocation Ethyl, Benzyl, Tert-butyl, Allyl. (b) Explain E2 elimination reaction with suitable example. Discuss effect of substrate and leaving group on E2 elimination. (c) Explain Hunsdiecker reaction. (a) Why are carbanions considered as reactive intermediates ? Discuss their generation, stability and reactions. (b) Explain why singlet carbenes are electrophilic and triplet carbenes are diradical in nature. (c) Explain E1cB reaction with mechanism. (a) Explain thermal and photo induced [4+2] cyclo-addition reaction. State which is symmetry allowed and which is symmetry

DRG_66_(4)

(4)

(<i>b</i>)	Write notes on the following :	4×3
	(<i>i</i>) Ene reaction	
	(ii) Suprafacial and Antarafacial shifts	
	(iii) Aza-Cope rearrangement	
	OR	
(<i>a</i>)	Explain why cis-3, 4-dimethyl cyclo- butene on heating gives cis-trans-2, 4-hexadiene, while on photochemical reaction the product is trans-trans-2, 4-hexadiene.	10

- (b) Explain the following with suitable example : 5×2
 - (*i*) Sigmatropic rearrangement
 - (ii) Electrocyclic reaction

DRG_66_(4)

M.Sc. 1st Semester Examination, Dec.-Jan., 2021-22

CHEMISTRY

Paper - III

Quantum Chemistry (Thermodynamics and Chemical Dynamics-I)

Note : Answer all questions. The figures in the righthand margin indicate marks.

Unit-I

1.	(<i>a</i>)	Transform the complex number, z = -3 + 2i into polar form.	5
	(<i>b</i>)	If \vec{r} is the radius vector and \vec{p} is the momentum vector and	
		$\vec{L} = i\vec{L}_x + j\vec{L}_y + k\vec{L}_z$ where, \vec{L} is the total	
		angular momentum, then find the values	
		of \vec{L}_x , \vec{L}_y and \vec{L}_z .	5

DRG_121_(4)

(<i>c</i>)	Give the application of Schrodinger wave	
	equation to find out energy and spherical	
	harmonics of a rigid rotator.	10

OR

- (a) If $z_1 = 2 3i$ and $z_2 = -5 + 2i$, then find the values of $|z_1|$, $|z_2|$ and the arguments of z_1 and z_2 .
- (b) Write the postulates of quantum mechanics. Derive time independent equation on the basis of postulates of quantum mechanics.
 10

(c) Find

2.

$$\int e^{3x} \cos(3x) dx \qquad 5$$

Unit-II

<i>(a)</i>	Using Maxwell relations, show that for	
	van der Waal's gas $\frac{\delta Cp}{\delta p} = \frac{2a}{RT^2}$.	10
(<i>b</i>)	Derive Gibb's-Duhem equation.	5
(c)	What is Fugacity? How it vary with pressure?	5

OR

DRG_121_(4)

(Continued)

	(<i>a</i>)	Show that chemical potential of a component in the gaseous mixture is always less than its chemical potential in the pure state.	10
	(<i>b</i>)	Give the method of determination of partial molar volume.	5
	(<i>c</i>)	What is activity? Discuss activity of an ideal gas and that of a real gas.	5
		Unit-III	
3.	(<i>a</i>)	Discuss briefly Debye-Huckel theory of strong electrolytes and give Debye-Huckel Onsager equation.	10
	(<i>b</i>)	How the mean activity coefficients of electrolytes can be determined by emf measurement?	5
	(<i>c</i>)	Calculate the mean activity coefficient of a 0.02 molar aqueous solution of zinc chloride. (Given $A = 0.509$)	5
		OR	
	(<i>a</i>)	Derive Lipmann equation.	10
	(<i>b</i>)	Give the brief discussion of Debye- Huckel limiting law.	5
	(<i>c</i>)	Explain Stern model of electrified interface.	5

DRG_121_(4)

(4)

Unit-IV

What are consecutive reactions ? Give the kinetics of consecutive reactions and explain transient equilibrium and secular equilibrium of reactions.	10
What is Salt effect? Explain the salt effect involved in catalytic reactions?	5
Give the application of steady state kinetics to the thermal reaction between hydrogen and bromine.	5
OR	
What are the postulates of transition state theory? Derive Eyring equation on the basis of transition state theory.	10
Discuss integral and differential methods of determining rate law.	5
	 explain transient equilibrium and secular equilibrium of reactions. What is Salt effect ? Explain the salt effect involved in catalytic reactions ? Give the application of steady state kinetics to the thermal reaction between hydrogen and bromine. <i>OR</i> What are the postulates of transition state theory ? Derive Eyring equation on the basis of transition state theory. Discuss integral and differential methods

DRG_121_(4)

M.Sc. 1st Semester Examination, Dec.-Jan., 2021-22

CHEMISTRY

Paper - IV

Theory and Application of Spectroscopy

Note : Answer **all** questions. All parts of answer of each question should be written in one place. Be precise and to the point in your answer. All questions carry equal marks.

Unit-I

- 1. (a) Explain intensity of spectral lines.
 - (b) Explain factor affecting line width.

OR

- (a) Explain interaction of IR radiation with vibrating molecules.
- (b) Explain interaction of microwave radiation with rotating molecules.

DRG_169_(3)

Unit-II

- **2.** (*a*) Classify rotating molecules on the basis of moment of inertia.
 - (b) Explain interaction of microwave radiation with linear, symmetric top, assymetric top and spherical top molecules.

OR

- (a) Show that microwave spectra are observed at constant spacing.
- (b) Rotational constant of $H^{35}Cl$ is 10.5909 cm⁻¹. Calculate rotational constants for $H^{37}Cl$.

Unit-III

3. Explain theory and application of electron diffraction spectroscopy.

OR

Describe principle and application of Turbidimetry.

Unit-IV

4. (*a*) How will you explain different lines of rotating molecules by colliding microwave radiations ?

DRG_169_(3)

(Continued)

(b) Explain Raman activity of symmetric top and spherical top molecules.

OR

- (a) How will you explain rotational vibrational Raman spectroscopy ?
- (b) Explain Raman activity of H_2 and H_2O molecules.

DRG_169_(3)