

M.Sc. 1st Semester Examination, March-April 2021

# PHYSICS

# Paper - I

# Mathematical Physics

*Time* : Three Hours] [Maximum Marks : 80

**Note** : Answer **all** questions. The figures in the righthand margin indicate marks.

### Unit-I

| 1. | ( <i>a</i> ) | Define inner product of vector space and explain its properties.              |    |  |  |  |  |  |  |  |
|----|--------------|-------------------------------------------------------------------------------|----|--|--|--|--|--|--|--|
|    | <i>(b)</i>   | Find the inverse of a matrix                                                  | 12 |  |  |  |  |  |  |  |
|    |              | $A = \begin{bmatrix} 3 & -1 & 1 \\ -15 & -6 & -5 \\ 6 & -2 & 2 \end{bmatrix}$ |    |  |  |  |  |  |  |  |
|    |              | OR                                                                            |    |  |  |  |  |  |  |  |
|    | <i>(a)</i>   | What do you mean by linear dependence                                         |    |  |  |  |  |  |  |  |
|    |              | or independence of vectors?                                                   | 4  |  |  |  |  |  |  |  |
|    | <i>(b)</i>   | Examine the linear dependence or                                              |    |  |  |  |  |  |  |  |
|    |              | independence of the following set of vectors :                                | 12 |  |  |  |  |  |  |  |
|    |              | $[2, 1, -4]$ ; $[0 \ 1 \ 2]$                                                  |    |  |  |  |  |  |  |  |
|    |              | [6, -1, 14] , [4 0 12]                                                        |    |  |  |  |  |  |  |  |

DRG\_41\_(3)

### Unit-II

| 2. | ( <i>a</i> ) | Deduce Cauchy residue theorem.                    | 12 |  |  |  |  |  |  |  |
|----|--------------|---------------------------------------------------|----|--|--|--|--|--|--|--|
|    | <i>(b)</i>   | Explain Contour integration.                      | 4  |  |  |  |  |  |  |  |
|    | OR           |                                                   |    |  |  |  |  |  |  |  |
|    | ( <i>a</i> ) | Explain Cauchy integral formula with one example. | 12 |  |  |  |  |  |  |  |
|    | <i>(b)</i>   | b) Find the residue of                            |    |  |  |  |  |  |  |  |
|    |              | $\frac{z^4}{(z-1)^4 (z-2)(z-3)}$                  |    |  |  |  |  |  |  |  |
|    |              | at $z = 1$                                        |    |  |  |  |  |  |  |  |
|    |              | Unit-III                                          |    |  |  |  |  |  |  |  |

| 3. | <i>(a)</i> | Deduce     | the | formula  | for  | second   | order |    |
|----|------------|------------|-----|----------|------|----------|-------|----|
|    |            | differenti | ial | equation | with | variable | e co- |    |
|    |            | efficients | 5.  |          |      |          |       | 10 |

(b) Solve the differential equation 6

$$\frac{d^2y}{dx^2} + 3\frac{dy}{dx} + 2y = x^3 + x$$

#### OR

(a) Solve the differential equation

12

$$x(1-2x)\frac{d^2y}{dx^2} - (6x+1)\frac{dy}{dx} - 2y = 0$$

(b) Explain the method of Green's function. 4

DRG\_41\_(3)

(Continued)

### Unit-IV

**4.** (*a*) Find the solution of Lagurre's differential equation. 10

$$x\frac{d^2y}{dx^2} + (1-x)\frac{dy}{dx} + \lambda y = 0$$

(b) Show that

(i)  $\frac{d}{dx}\left[x^{-n}J_{n}\left(x\right)\right] = -x^{-n}J_{n+1}\left(x\right)$ 

$$(ii) \quad J_0'(x) = -J_1(x)$$

# OR

| ( <i>a</i> ) | Establish orthogonality of Bessel's function.                  | 8  |
|--------------|----------------------------------------------------------------|----|
| ( <i>b</i> ) | Derive generating function for $H_n(x)$ .                      | 8  |
|              | Unit-V                                                         |    |
| ( <i>a</i> ) | Define inverse Laplace's transform and explain its properties. | 10 |
| ( <i>b</i> ) | Explain any one theorem on Fourier transform.                  | 6  |

# OR

| <i>(a)</i> | Explain              | Fourier   | integral    | and     | Fourier |   |  |  |  |
|------------|----------------------|-----------|-------------|---------|---------|---|--|--|--|
|            | transform in detail. |           |             |         |         |   |  |  |  |
| <i>(b)</i> | Discuss              | the prope | erties of l | Fourier | series. | 6 |  |  |  |

DRG\_41\_(3)

5.

340



M.Sc. 1st Semester Examination, March-April 2021

### PHYSICS

Paper - II

Classical Mechanics

*Time* : Three Hours]

[Maximum Marks : 80

**Note** : Answer **all** questions. The figures in the righthand margin indicate marks.

#### Unit-I

- 1. (a) What are constraints? Classify the constraints with some examples. 6
  - (b) Obtain Lagrange's equation and show that these can be written as 10

$$\frac{d}{dt} \left( \frac{\partial T}{\partial \dot{q}_j} \right) - \frac{\partial T}{\partial q_j} = Q_j$$

OR

DRG\_96\_(3)

What is D'Alembert's principle? Derive Lagrange's equation of motion from it for conservation system. How will result be modified for non-conservative system?

#### Unit-II

| 2. | Derive Hamiltonian function and equation of |  |  |  |  |  |  |  |
|----|---------------------------------------------|--|--|--|--|--|--|--|
|    | motion for a compound pendulum. Also        |  |  |  |  |  |  |  |
|    | explain why Hamiltonian method preferred    |  |  |  |  |  |  |  |
|    | over the Lagrangian formulation.            |  |  |  |  |  |  |  |

#### OR

| (a) | Explain  | cyclic   | co-ordinates | and | their |  |
|-----|----------|----------|--------------|-----|-------|--|
|     | physical | signific | mificance.   |     |       |  |

## (b) Discuss the principle of least action. 8

#### Unit-III

| 3. | Exp      | olain I | Hamilt | ton-Jacobi | the | ory | and | apply   | it  |    |
|----|----------|---------|--------|------------|-----|-----|-----|---------|-----|----|
|    | to       | solve   | the    | problem    | of  | one | din | nension | nal |    |
|    | harmonic |         | oscil  | lator.     |     |     |     |         |     | 16 |

### OR

- (a) Discuss the physical significance of: 8
  - (i) Hamilton's principle function
  - (ii) Hamilton's characteristics function
- (b) Use action-angle variable to determine the frequency of one dimensional harmonic oscillator.

**DRG\_96**(3)

(Continued)

# (3)

#### Unit-IV

| 4. | ( <i>a</i> ) | How will you reduce the two-body<br>problem into one body problem? Hence |    |
|----|--------------|--------------------------------------------------------------------------|----|
|    |              | explain the concept of reduced mass.<br>Give its two examples.           | 10 |
|    | ( <i>b</i> ) | Calculate reduced mass of the Hydrogen atom and Positronium.             | 6  |
|    |              | OR                                                                       |    |
|    |              | rive the differential equation of orbit in                               |    |

polar coordinates under central force. Investigate the motion of particle under attractive inverse square law.

# Unit-V

| 5. | Answer | any | two | of | the | following : | 1 | 6 |
|----|--------|-----|-----|----|-----|-------------|---|---|
|----|--------|-----|-----|----|-----|-------------|---|---|

- (a) Eulerian angles
- (b) Angular momentum and kinetic energy of the rigid body
- (c) Formulation of the problem of small oscillations
- (d) The Coriolis force

**DRG\_96**(3)

340



M.Sc. 1st Semester Examination, March-April 2021

### PHYSICS

Paper - III

Electrodynamics and Plasma Physics

Time : Three Hours] [Maximum Marks : 80

**Note** : Answer **all** questions. All questions carry equal marks.

### Unit-I

1. What are inertial and non-inertial frame of references? Derive Lorentz's transformation equaiton.

### OR

Write notes on the following:

- (a) Scalar and vector potentials
- (b) Green's function for the wave equation

DRG\_158\_(3)

### Unit-II

2. What are Lienard-Wiechart potentials? Derive formula for Lienard-Wiechart potentials for a print charge.

#### OR

Write notes on the following:

- (a) Radiation emitted by a charge in arbitrary extremely relativistic motion
- (b) Larmor's formula

#### Unit-III

- **3.** Explain the following :
  - (a) Synchrotron Radiation
  - (b) Cherenkov Radiation

### OR

Write notes on the following:

- (a) Spectrum of synchrotron radiation
- (b) Transition of cyclotron to synchrotron emission

#### Unit-IV

4. What is Plasma? Explain Debye shielding phenomenon and criteria for plasma.

#### OR

**DRG\_158\_**(3)

(Continued)

# (3)

Explain the following:

- (a) Motion of charge particle in transverse magnetic field
- (b) Magnetic mirror effect

### Unit-V

5. State, explain and prove the Boltzmann equation.

#### **O**R

Write notes on the following:

- (a) Hydrodynamic waves
- (b) Magnetosonic and Alfven waves

DRG\_158\_(3)



M.Sc. 1st Semester Examination, March-April 2021

### PHYSICS

Paper - IV

Electronics

*Time* : Three Hours]

[Maximum Marks : 80

**Note** : Answer **all** questions. All questions carry equal marks.

### Unit-I

- **1.** (*a*) Explain the working of differential amplifier in dual input and balanced output mode.
  - (b) Explain Op-amp based Schmitt trigger circuit.

### OR

- (*a*) Compare the parameters of IC 741 Op-amp and ideal Op-amp.
- (b) What is Op-amp? Explain any one application of Op-amp.

DRG\_222\_(3)

#### Unit-II

- **2.** (*a*) Describe the circuit and working of one logic gate family in which unsaturated voltage level is used.
  - (b) Represent a digital circuit using NOR gate for the given function

 $f(a, b, c) = \sum m(0, 2, 4, 6)$ 

#### OR

- (a) What are the different laws of Boolean algebra? How De Morgan's law help in changing the logic gates in any digital circuit?
- (b) Explain the working of DCTL logic family as gate.

#### Unit-III

- **3.** (*a*) What is the difference between dynamic memory and static memory ?
  - (b) Define flip-flop. Explain the race around condition of level triggered JK flip-flop. Also give the solution to remove race around condition.

#### OR

- (a) Explain 4-bit asynchronous ripple counter using JK flip-flop.
- (b) Draw the internal circuit diagram of 16×1 multiplexer circuit using gates.

**DRG\_222\_**(3)

(Continued)

### (3)

#### Unit-IV

- 4. (a) Describe architecture of 8085 microprocessor.
  - (b) How many interrupt pins are there in 8085 microprocessor? Explain its working with one example.

### OR

- (a) Describe pin diagram of 8085 microprocessor.
- (b) Write short notes on the following :
  - (i) General purpose register
  - (ii) Flag register

#### Unit-V

- 5. (a) How many instructions are there in 8085 microprocessor ?
  - (b) Write an assembly language programme for adding two 8-bit numbers.

#### **O**R

- (*a*) Write an assembly language programme for multiplying two 8-bit numbers.
- (b) Explain addressing mode of 8085 microprocessor.

**DRG\_222\_**(3)