

M.Sc. 1st Semester Examination, March-April 2021

CHEMISTRY

Paper - I

Group Theory and Chemistry of Metal Complexes

Time : Three Hours]	[Maximum	Marks	:	80
	[Minimum Pass	Marks	:	16

Note : Answer **all** questions. The figures in the righthand margin indicate marks.

Unit-I

1.	(<i>a</i>)	Explain different types of plane of symmetry with example.	6
	(<i>b</i>)	Construct multiplication table of $C_{3\nu}$ point group.	8
	(<i>c</i>)	Explain mutual exclusion principle with example.	6
		OR	

DRG_42_(3)

- (2)
- (a) Explain conjugacy relation and classes. 6
- (b) The character table of D_3 point group is given below. By direct product method determine the product $E \times E$ and reduce it into the sum of irreducible representations.

D_3	E	$2C_3$	$3C_2$
$\overline{A_1}$	1	1	1
A_2	1	1	-1
Е	2	-1	0

(c) Evaluate the products σ_v , σ_y ' and $C_2 \sigma_v$ for a $C_{2\nu}$ point group.

6

8

Unit-II

<i>(a)</i>	Describe ligand group orbitals and	
	symmetry matched metal atomic orbitals	
	appropriate for σ bonding in an octahedral ML ₆ complex.	5
<i>(b)</i>	Explain uses of IR Spectra to determine	
	structure of metal carbonyls.	10
(<i>c</i>)	Explain nephelauxetic effect.	5
	OR	
(<i>a</i>)	Using MOT explain why F^{-} is a weak ligand.	7
(<i>b</i>)	Describe preparation, properties and structure of $Ni(CO)_4$.	7
	(b) (c) (a)	 symmetry matched metal atomic orbitals appropriate for σ bonding in an octahedral ML₆ complex. (b) Explain uses of IR Spectra to determine structure of metal carbonyls. (c) Explain nephelauxetic effect. OR (a) Using MOT explain why F⁻ is a weak ligand. (b) Describe preparation, properties and

DRG_42_(3)

(Continued)

(3)

(<i>c</i>)	Write method of preparation and structure
	of dinitrogen complex.

Unit-III

3.	(<i>a</i>)	Describe spectrophotometric method for the determination of stability constant and composition of a complex.	7
	(<i>b</i>)	Explain structure of isopoly and heteropoly acids of W.	8
	(<i>c</i>)	Write a short note on silicides.	5
		OR	
	(<i>a</i>)	What is chelate effect? Explain the factors affecting it.	7
	(<i>b</i>)	Describe classification of silicates with example.	7
	(<i>c</i>)	Write a short note on nitrides.	6
		Unit-IV	
4.	<i>(a)</i>	Explain structure of higher boranes.	8
	<i>(b)</i>	Explain structure of tetrameric phosphazenes.	6
	(<i>c</i>)	Write a short note on trinuclear,	C
		tetranuclear metal clusters.	6
		OR	
	(<i>a</i>)	Describe method of preparation and structure of carboranes.	7
	<i>(b)</i>	Explain chain catenation and heterocatenation.	7
	(<i>c</i>)	Explain structure of borazines.	6
	C 43		720

DRG_42_(3)

720

M.Sc. 1st Semester Examination, March-April 2021

CHEMISTRY

Paper - II

Concepts in Organic Chemistry

Time : Three Hours] [Maximum]

[Maximum Marks : 80

Note : Answer **all** questions. The figures in the righthand margin indicate marks.

Unit-I

 (a) Which type of molecules exhibit delocalized bonding? Discuss the molecular orbital picture to explain delocalized bonding and aromaticity of benzene.

(b) Explain the following:

- (*i*) Aromaticity of 4π and 8π electron system 5
- (ii) Conjugation and cross conjugation 5

DRG_97(4)

		(2)	
		(<i>iii</i>) Cyclopentadienyl cation is antiaromatic while cyclopropenyl cation is aromatic <i>OR</i>	5
	(a)	Explain bonding in fullerenes.	ć
		-	6
	<i>(b)</i>	Heat of hydrogenation of cyclohexene is -28.6 k cal/mole. The observed heat of hydrogenation of benzene to cyclohexane is -49.8 k cal/mole. Find out the resonance energy of benzene.	4
	(C)	Explain aromaticity on the basis of Huckel rule. Explain the aromaticity of azulenes.	10
		Unit-II	
2.	(<i>a</i>)	Unit-II Define conformation and configuration. Draw the various conformers of disubstituted cyclohexanes. Which conformer will be more stable and why?	8
2.	(a) (b)	Define conformation and configuration. Draw the various conformers of disubstituted cyclohexanes. Which conformer will be more stable and why?	8
2.		Define conformation and configuration. Draw the various conformers of disubstituted cyclohexanes. Which conformer will be more stable and why? Discuss optical activity of allenes and spiranes.	
2.	(<i>b</i>)	Define conformation and configuration. Draw the various conformers of disubstituted cyclohexanes. Which conformer will be more stable and why? Discuss optical activity of allenes and spiranes. Explain the term chiral and achiral with	8
2.	(<i>b</i>) (<i>c</i>)	Define conformation and configuration. Draw the various conformers of disubstituted cyclohexanes. Which conformer will be more stable and why? Discuss optical activity of allenes and spiranes. Explain the term chiral and achiral with suitable examples.	8
2.	(<i>b</i>) (<i>c</i>) Exp	Define conformation and configuration. Draw the various conformers of disubstituted cyclohexanes. Which conformer will be more stable and why? Discuss optical activity of allenes and spiranes. Explain the term chiral and achiral with suitable examples. <i>OR</i>	8 4

(3)

- (b) Methods of resolution
- (c) Hybridization of atoms
- (d) Synthetic organic chemistry

Unit-III

3.	(<i>a</i>)	Account for generation, structure, stability and chemical reactions of carbocations.	10
	(<i>b</i>)	Give the mechanism of Hunsdiecker reaction.	6
	(c)	Complete the following reactions and indicate reaction intermediate in each case –	4
		(<i>i</i>) $CH_3 - C = CH_2 + HBr \rightarrow \dots$	
		(<i>ii</i>) $C_6H_5 - CH = C$ CH4 + HBr	
		OR	
	(<i>a</i>)	Explain E_1 and E_2 mechanisms.	10
	(<i>b</i>)	Describe the generation and reactivity of nitrene.	5
	(<i>c</i>)	Write a note on Saytzeff's rule.	5

DRG_97(4)

(4)

Unit-IV

4.	(<i>a</i>)	Classify pericyclic reactions and explain correlation diagram taking example of 1, 3, 5 – hexatriene and 1, 3 – hexadiene	
		system.	10
	(<i>b</i>)	Explain the following:(<i>i</i>) Ene reaction(<i>ii</i>) Cope rearrangement	5×2
		OR	
	(<i>a</i>)	Describe with suitable example of $3, 3$ and $5, 5$ – sigmatropic rearrangements.	10
	(<i>b</i>)	Explain the following: (<i>i</i>) 1, 3 dipolar cycloaddition reaction	5×2

(ii) Woodward-Hoffmann selection rule.

DRG_97(4)

M.Sc. 1st Semester Examination, March-April 2021

CHEMISTRY

Paper - III

Quantum Chemistry : Thermodynamics and Chemical Dynamics - I

Note : Answer **all** questions. The figures in the righthand margin indicate marks.

Unit-I

1. (a) Find the inverse of the matrix

$$A = \begin{bmatrix} 3 & -2 & -1 \\ -4 & 1 & -1 \\ 2 & 0 & 1 \end{bmatrix}$$

(b) Outline the variation method used for obtaining approximate value of ground state energy system.

DRG_159_(4)

(Turn Over)

(2)

(c) What are the various methods for obtaining approximate solution to the wave function equation? Discuss the perturbation method and application of first order perturbation theory of the atom.

OR

(a)	Find	the	inverse	of	the	matrix	
-----	------	-----	---------	----	-----	--------	--

- $\begin{bmatrix} 5 & -2 & 3 \\ 4 & -1 & -5 \\ 6 & 7 & 9 \end{bmatrix}$
- (b) Explain angular momentum operator.Work out measurable value of the angular momentum of the particle.5
- (c) Describe eigen value and matrix element of angular momentum operator. 10

Unit-II

2.	<i>(a)</i>	What	is pa	rtition	funct	tion ?	Discu	JSS	
		rotation	al par	tition fu	nctio	n.			5
	(<i>b</i>)	Describe relation		laxwell's discuss			-		
		proving				11			15

OR

(a) Explain partial molar volume and partial molar heat content.5

DRG_159_(4)

(Continued)

10

1	2)
L	J)

	(<i>b</i>)	What is the most probable distribution? Explain Maxwell-Boltzmann distribution law of energy partition. Compare it with Bose-Einstein statics.	15
		Unit-III	
3.	(<i>a</i>)	Write notes on the following :	10
		(i) Activity coefficient	
		(ii) Electro-catalysis	
	(<i>b</i>)	Explain electrical double layer. Discuss Gouy-Chapman electrical double layer.	10
		OR	
	(<i>a</i>)	Describe the following:	10
		(<i>i</i>) Ionic strength	
		(ii) Over potential	
	(<i>b</i>)	Discuss Debye-Huckel theory for acticity coefficient of electrolytic solution.	10
		Unit-IV	
4.	(<i>a</i>)	What are the fast reactions? Describe flash photolysis method of studying fast reaction.	10
	(<i>b</i>)	Discuss the following :	10
		(i) Activated complex theory	
		(ii) Oscillatory reactions	
		OR	
DR	.G_15	19_(4) (Turn 0	ver)

(4)

<i>(a)</i>	Desc	ribe	Lindemann's	theory	of	
	unim	olecular	reactions.			10
(<i>b</i>)	Discu	uss the	following :			10
	(<i>i</i>) S	Seconda	ry salt effect			
	· /	-	oression for the of H ₂ and Br ₂	-	nical	

DRG_159_(4)

M.Sc. 1st Semester Examination, March-April 2021

CHEMISTRY

Paper - IV

Theory and Application of Spectroscopy

<i>Time</i> : Three Hours]	[Maximum Marks	:	80
----------------------------	----------------	---	----

Note : Answer all questions. All parts of answer of each question should be written in one place. Be precise and to the point in your answer. The figures in the right-hand margin indicate marks.

Unit-I

 (a) Explain which of the following molecules exhibit (i) pure vibrational and (ii) pure rotational spectrum : 4 H₂O, HCl, BF₃, CO₂, CH₄, CCl₄, C₆H₆, N₂, O₂
 (b) Explain the following terms with reference to electromagnetic radiations : 8 (i) Scattering

DRG_223(4)

- (*ii*) Dispersion
- (iii) Absorption and Emission
- (iv) Polarization

<i>(c)</i>	Describe	unce	rtainty	principl	le	with	its	
	significanc	e in	spectro	oscopic	tec	chniqu	les.	8

(2)

OR

<i>(a)</i>	"Atomic	spectrum	is	line	spectrum	
	whereas	molecular s	pect	rum is	obtained	
	as band." Give proper explanation.					
<i>(b)</i>	Explain	the followin	g :			8

- (i) Natural line width
- (ii) Intensity of spectral lines
- (c) In which region of electromagnetic spectrum do the following frequencies exist ?
 - (*i*) 5 cm⁻¹
 - (*ii*) 1000 cm⁻¹
 - (*iii*) 12500 cm^{-1}
 - (*iv*) 60000 cm^{-1}

Explain the spectroscopic techniques associated with these spectrum.

Unit-II

2. (a) The rotational constant for H^1Cl^{35} is observed to be 10.5909 cm⁻¹. What are the values of B for H^1Cl^{37} and D^2Cl^{35} ? 4

DRG_223(4)

(Continued)

<i>(b)</i>	What is rotational constant? Compare the
	energy levels of a rigid diatomic rotor
	with its isotopically substituted molecule
	and discuss the discrepancy.

(c) How microwave spectroscopy is useful in the determination of bond length?
 Calculate the rotational constants of H₂ and HCl molecules. The bond lengths of H—H and H—Cl are 200 pm and 136 pm respectively.

OR

	How pure rotational spectrum is obtained ? Explain line spacing obtained in this spectrum.	4
	Classify molecules in terms of their moment of inertia and indicate which of the following molecules will show a microwave rotational spectrum : H_2 , CH_3Cl , CH_2Cl_2 , O_3 , SF_6 , C_2H_2 , NH_3 , CH_3CHO	8
· · ·	Describe rotational spectra of linear polyatomic molecule. Unit-III	8

3. (a) Write the basic principle of Auger spectroscopy. (b) Write the principle and applications of electron diffraction microscopy. 8

DRG_223_(4)

(Turn Over)

8

8

(3)

(4)

(<i>c</i>)	Explain	variables	s on wl	nich in	tensities	of	
	Auger e	lectron	spectrun	n peak	s depend	d. 8	;

OR

	(<i>a</i>)	Explain the process of phosphorescence describing it's applications.	4
	(<i>b</i>)	Describe theory, instrumentation and applications of fluorometry.	8
	(c)	Explain the terms 'optical density' and 'turbidity'. Describe the instrument that can be used for measurement of optical density.	8
		Unit-IV	
4.	(<i>a</i>)	Write down the Quantum theory of Raman effect.	4
	<i>(b)</i>	Describe Resonance Raman Spectroscopy	8
	(c)	Explain selection rules for pure-rotational, vibrational and vibrational-rotational Raman spectra.	8
		OR	
	(<i>a</i>)	Why it is often desirable to determine Raman spectra in the gas phase?	4
	<i>(b)</i>	Write a note on CARS.	8
	(c)	Write instrumentation, advantages and limitations of Raman spectroscopy.	8

DRG_223_(4)