

M.A./M.Sc. 3rd Semester Examination, March-April 2021

MATHEMATICS

Paper - I

Integration Theory and Functional Analysis

Time : Three Hours][Maximum Marks : 80[Minimum Pass Marks : 16

Note : Answer any **two** parts from each question. All questions carry equal marks.

Unit-I

- 1. (a) Let E be a measurable set such that $0 < vE < \infty$. Then there is a positive set A contained in E with vA > 0.
 - (b) State and prove Radon-Nikodym theorem.
 - (c) State and prove Riesz Representation theorem.

DRG_16_(3)

Unit-II

- 2. (a) State and prove Fubini theorem.
 - (b) If f is absolutely continuous on [a, b] and f'(x) = 0 a.e. then f is constant.
 - (c) Let *E* be a measurable subset of $X \times Y$ such that $\mu \times \nu(E)$ is finite. Then for almost all *x* the set E_x is a measurable subset of *Y*. The function *g* defined by $g(x) = \nu(E_x)$ is a measurable function defined for almost all *x* and

$$\int g d\,\mu = \mu \times \nu(E)$$

Unit-III

3. (a) Let K be a compact set, O an open set with $K \subset O$. Then

 $K \subset U \subset H \subset O$

where U is a r-compact open set and H is a compact G_{δ} .

- (b) Let μ be a Baire measure on a locally compact space X and E a r-bounded Baire set in X. Then for $\epsilon > 0$,
 - (*i*) There is a *r*-compact open set O with $E \subset O$ and $\mu (O \sim E) < \epsilon$.
 - (*i*) $\mu E = \sup \{\mu k : K \subset E, K \text{ a compact } G_{\delta}\}.$
- (c) State and prove Riesz-Markov theorem.

 $DRG_16_(3)$

(3)

Unit-IV

4. (*a*) Let *M* be a closed linear subspace of a normed linear space *X*. Then the quotient space *X*/*M* with the norm

 $||x + M|| = \inf \{||x + M|| : m \in M\}$

is a Banach space if X is a Banach space.

- (b) Let X be a finite dimensional normed linear space. Then any two norms defined on X are equivalent.
- (c) Show that a bounded linear transformation T from a normed linear space X into Y is continuous.

Unit-V

- (a) Define weak convergence. Let {x_n} be a weakly convergent sequence in a normed space X. Then
 - (i) The weak limit of $\{x_n\}$ is unique,
 - (i) The sequence $\{||x_n||\}$ is bounded.
 - (b) The dual of l_1 is isometrically isomorphic to l_{∞} .
 - (c) If X is a finite dimensional normed linear space, then weakly convergent sequence on it is strong convergent.

 $DRG_{16}(3)$

580

M.A./M.Sc. 3rd Semester Examination, March-April 2021

MATHEMATICS

Paper - II

Partial Differential Equations and Mechanics - I

Time	:	Three	Hours]	[Maximum	Marks	:	80
------	---	-------	--------	----------	-------	---	----

Note : Answer any **two** parts from each question. All questions carry equal marks.

Unit-I

- 1. (a) State and prove the symmetry of Green's function.
 - (b) State and prove the Poisson formula for half-space.
 - (c) State and prove the mean value formula for Laplace equation.

DRG_67_(3)

Unit-II

- **2.** (*a*) Derive the fundamental solution for heat equation.
 - (b) Obtain the solution for n=2 of wave equation by spherical means.
 - (c) State and prove the Euler's-Poisson-Darboux equation for wave equation.

Unit-III

- **3.** (*a*) Derive Kinetic energy in terms of generalized co-ordinates.
 - (b) State and prove the Donkin's theorem.
 - (c) Derive Lagrange's equation of first kind.

Unit-IV

- 4. (a) Prove that the Poisson identity [u, (v, w)] + [v, (w, u)] + [w, (u, v)] = 0
 - (b) Find the shortest line on the surface of the sphere.
 - (c) Derive Euler's equation for one dependent variable.

Unit-V

5. (a) Find the attraction of a uniform circular disc, of radius a and small thickness k, at a point p on the axis of the disc at a distance p from its centre.

DRG_67_(3)

- (b) Find the potential of a thin uniform spherical shell at any point.
- (c) Show that a family of right circular cones with common axis and vertex is a possible family of equipotential surfaces and find the potential function.

580

(3)

M.A./M.Sc. 3rd Semester Examination, March-April 2021

MATHEMATICS

Optional (C)

Paper - III

Fuzzy Sets and its Applications - I

Time : Three Hours][Maximum Marks : 80[Minimum Pass Marks : 16

Note : Answer any **two** parts from each question. All questions carry equal marks.

1. (a) Let $A_i \in F(x)$ for all $i \in I$, where I is an index set. Then prove that

$$\bigcup_{i\in I}{}^{\alpha-}A_i \leq \left(\bigcup_{i\in I}A_i\right)$$

(b) State and prove second decomposition theorem.

DRG_131_(3)

- (2)
- (c) Prove that the standard Fuzzy intersection is the only idempotent *t*-norm.
- 2. (a) Prove that a *t*-norm *i* and an involute fuzzy complement *C*, the binary operation *u* on [0, 1] defined by u(a, b) = c (*i*(*a*), c(b)) for all $a,b \in [0, 1]$ is a *t*-conorm such that $\langle i, u, c \rangle$ is a dual triple.
 - (b) Let A and B are Fuzzy numbers with triangular shape in a Fuzzy equation as

$$A = \begin{cases} 0 & \text{for } x \le 3, x > 5 \\ x - 3 & \text{for } 3 < x \le 4 \\ 5 - x & \text{for } 4 < x \le 5 \end{cases}$$

$$B = \begin{cases} 0 & \text{for } x \le 12, x > 32\\ (x - 12)/8 & \text{for } 12 < x \le 20\\ (32 - x)/12 & \text{for } 20 < x \le 32 \end{cases}$$

Find the solution of equation $A \cdot X = B$.

- (c) Prove that that $\langle i, u, c \rangle$ be a dual triple. Then prove that the Fuzzy operations i, u, c satisfy the law of excluded middle and the law of contradiction.
- **3.** (a) Prove that for Fuzzy sets

MIN [A, MAX (A B)] = A.

DRG_131_(3)

(3)

(b) Let R be a reflexible Fuzzy relation on X^2 , where $|X| = n \ge 2$. Then prove that

$$R_{T(i)} = R^{(n-1)}$$

(c) Solve the following Fuzzy relation equation using max-min composition

$$P \circ \begin{bmatrix} .9 & .6 & 1 \\ .8 & .8 & .5 \\ .6 & .4 & .6 \end{bmatrix} = \begin{bmatrix} .6 & .6 & .5 \end{bmatrix}$$

- **4.** (*a*) If *R* symmetric, then prove that each power of *R* is symmetric.
 - (b) Explain Fuzzy compatibility relations.
 - (c) Explain Fuzzy graphs.
- 5. (a) Prove that every possibility measure 'Pos' on a finite power set P(x) is uniquely determined by a possibility distributive function $r: X \to [0, 1]$ via the formula. pos $(A) = \max r(x)$ for each $A \in P(X)$.
 - (b) Explain the Evidence theory.
 - (c) Let a given finite body of evidence (ε . m) be nested, then prove that for all $A, B \in P(X)$, we have
 - (i) $\operatorname{bel}(A \cap B) = \min[\operatorname{bel}(A), \operatorname{bel}(B)]$
 - (*ii*) $Pl(A \cup B) = \max[Pl(A), Pl(B)]$

DRG_131_(3)

380

M.A./M.Sc. 3rd Semester Examination, March-April 2021

MATHEMATICS

Optional - A

Paper - IV

Operations Research - I

Time : Three Hours]	[Maximum	Marks	:	80
	[Minimum Pass	Marks	:	16

Note : Answer any **two** parts from each question. All questions carry equal marks.

Unit-I

1. (a) Use Simplex method to solve the following linear programming problem : Maximize $z = 6x_1 + 8x_2$ Subject to : $5x_1 + 10x_2 \le 60$ $4x_1 + 4x_2 \le 40$ $x_1, x_2 \ge 0$

DRG_193_(7)

(b) Solve the following linear programming problem using the result of its dual:

Minimize $z = 24x_1 + 30x_2$ Subject to : $2x_1 + 3x_2 \ge 10$ $4x_1 + 9x_2 \ge 15$ $6x_1 + 6x_2 \ge 20$ $x_1, x_2 \ge 0$

(c) Consider the following linear programming problem :

Maxmize $z = 10x_1 + 15x_2 + 20x_3$ Subject to : $2x_1 + 4x_2 + 6x_3 \le 24$ $3x_1 + 9x_2 + 6x_3 \le 30$ $x_1, x_2, x_3 \ge 0$

and check whether the optimality is affected, if the profit coefficients are changed from (10, 15, 20) to (7, 14, 15). If so, find the revised optimum solution.

Unit-II

2. (a) Solve the following linear programming problem using big-M method :

DRG_193_(7)

- Minimize $z = 2x_1 + 3x_2$ Subject to : $x_1 + x_2 \ge 6$ $7x_1 + x_2 \ge 14$ $x_1, x_2 \ge 0$
- (b) Solve the following linear programming problem using dual simplex method :

(3)

Minimize $z = 2x_1 + 4x_2$ Subject to : $2x_1 + x_2 \ge 4$ $x_1 + 2x_2 \ge 3$ $2x_1 + 2x_2 \le 12$ $x_1, x_2 \ge 0$

(c) Find the Dual of the Primal:

Maximize $z = x_1 + 5x_2 + 3x_2$ Subject to : $x_1 + 2x_2 + x_3 = 3$ $2x_1 - x_2 = 4$ $x_1, x_2, x_3 \ge 0$

DRG_193_(7)

(4)

Unit-III

3. (*a*) Consider the following parametric linear programming problem :

Maximize $z = (10 - 2t) x_1 + (5 - 3t) x_2$ Subject to : $8x_1 + 2x_2 \le 48$ $2x_1 + 4x_2 \le 24$ $x_1, x_2 \ge 0$

and t is a non-negative parameter. Perform parametric analysis with respect to the objective function coefficients and identify the ranges of t over which the optimality is unaffected.

- (b) Write a short note on interior point algorithm.
- (c) Carry out two iterations of Karmarkar's algorithm for the following problem :

Minimize $z = x_1 - 2x_2$ Subject to : $x_1 - 2x_2 + x_3 = 0$ $x_1 + x_2 + x_3 = 1$ $x_1, x_2, x_3 \ge 0$

DRG_193_(7)

(5)

Unit-IV

- **4.** (*a*) Discuss the similarities and dissimilarities between Transportation and Assignment problem.
 - (b) Use Vogel's approximation method to solve the following transportation problem :

		Destination				Supply
		1	2	3	4	_
	1	3	1	7	4	300
Source	2	2	6	5	9	400
	3	8	3	3	2	500
Demand		250	350	400	200	_

(c) Write steps of Hungerian method for solving Assignment problem.

Unit-V

- **5.** (*a*) Write steps of PRIM algorithm for finding the Minimum Spanning Tree problem.
 - (b) A project is composed of 7 activities whose time estimates are listed in the

DRG_193_(7)

(6)
•	-	,

table below. Activities are identified by their beginning (*i*) and ending (*j*) node numbers :

Activity	Estimate Duration in Weeks					
(<i>i</i> - <i>j</i>)	Optimistic	Most likely	Pessimistic			
	(t_o)	(t_m)	(t_p)			
1-2	1	1	7			
1-3	1	4	7			
1-4	2	2	8			
2-5	1	1	1			
3-5	2	5	14			
4-6	2	5	8			
5-6	3	6	15			

- (i) Draw the project network.
- (*ii*) Find the expected duration and variance for each activity. What is the expected project length ?

DRG_193_(7)

Activity	Predecessor (s)	Duration (weeks)			
		t _o	t _m	t_p	
A	_	3	5	8	
В	-	6	7	9	
С	_	4	5	9	
D	A	3	5	8	
Ε	В	4	6	9	
F	A	5	8	11	
G	С, D	3	6	9	
Н	C, D, E	1	2	9	

(c) Consider the following data of the project :

(7)

- (i) Construct the project network.
- *(ii)* Find critical path and expected completion time.

DRG_193_(7)

580

M.A./M.Sc. 3rd Semester Examination, March-April 2021

MATHEMATICS

Optional (B)

Paper - V

Graph Theory - I

Time : Three Hours] [Maximum Marks : 80

Note : Answer any **two** parts from each question. All questions carry equal marks.

- 1. (a) Prove that if a graph H is Homeomorphic from a graph G, then G is a contraction of H.
 - (b) Prove that if G is a k-regular graph, k is an eigenvalue of G. Then this is simple if G is connected. Every other eigenvalue has absolute value $\leq k$.

DRG_243(3)

- (c) Define the following terms with an example :
 - (i) Direct sum
 - (i) Direct product
 - (iii) Derived graph
 - (*iv*) Vector space
- 2. (a) Prove that the incidence matrix F of a graph G has rank n-k, where k is the number of components.
 - (b) Prove that any square submatrix of the adjacency matrix F of a graph G has determinant +1, -1 or zero.
 - (c) Prove that the sum of any two cuts of a graph G is also a cut of G.
- 3. (a) Prove that if G is a critical graph, then $\delta(G) \ge k 1$.
 - (b) Prove that any uniquely k-colourable graph is (k-1) connected.
 - (c) Prove that for any graph G with order $n \ge 4$, $l(G) \le \lfloor n^2/4 \rfloor$.
- 4. (a) Prove that for any graph G, $\alpha_0 + \beta_0 = n$.
 - (b) Prove that for any graph G, c(G) = p(G).
 - (c) Prove that for any graph G of order $n \ge 2$ without isolated vertices, $\pi_i \le \lfloor n^2/4 \rfloor$ and the partition need use only edge and triangles.

DRG_243(3)

- 5. (a) Prove that a graph is triangulated iff every mimimal vertex separator induces a complete subgraph.
 - (b) Prove that every comparability graph is perfect.
 - (c) Prove that a graph G is a permutation graph iff G and \overline{G} are comparability graphs.

180

(3)